Tuesday, July 11, 2017

The Higgs - Five Years In

In case you've been asleep the past 5 years or so and what to catch up on our lovable Higgs, here is a quick, condensed version of the saga so far.

Where were you on 4 July 2012, the day the Higgs boson discovery was announced? Many people will be able to answer without referring to their diary. Perhaps you were among the few who had managed to secure a seat in CERN’s main auditorium, or who joined colleagues in universities and laboratories around the world to watch the webcast.

This story promises to have lots of sequels, just like the movies released so far this year.


The Universe's First Atoms Verify Big Bang Theory

The Big Bang theory makes many predictions and consequences, all of them are being thoroughly tested (unlike Intelligent Design or Creationism). These predictions and consequences are quantitative in nature, i.e. the theory predicts actual numbers.

Many of these "numbers" have been verified by experiments and observations, and they are continually being measured to higher precision. This latest one comes about from the prediction of the amount of certain gases during the early evolution of our universe.

But more data has just come in! Two new measurements, in a paper just coming out now by Signe Riemer-Sørensen and Espen Sem Jenssen, of different gas clouds lines up with a different quasar have given us our best determination of deuterium's abundance right after the Big Bang: 0.00255%. This is to be compared with the theoretical prediction from the Big Bang: 0.00246%, with an uncertainty of ±0.00006%. To within the errors, the agreement is spectacular. In fact, if you sum up all the data from deuterium measurements taken in this fashion, the agreement is indisputable.

The more they test it, the more convincing it becomes.


Wednesday, June 14, 2017

The Physics of Texting And Driving

First of all, let me be clear on this. I hate, HATE, HATE drivers who play with their mobile devices while they drive. I don't care if it is texting (stupid!) or just talking on their phones. These drivers are often driving erratically, unpredictably, and often do not use turn signals, etc. They are distracted drivers, and their stupid acts put my life and my safety in jeopardy. My nasty thought on this is that I wish Darwin would eliminate them out of the gene pool.

There! I feel better now. Coming back to the more sedate and sensible topic related to physics, Rhett Allain has a nice, short article on why physics will rationally explain to you why texting and driving is not safe, and why texting and driving ANNOYS OTHER PEOPLE!

OK, so my calmness didn't last very long.

The physics is quite elementary that even any high-school physics students can understand. And now, I am going back to my happy place.


Saturday, June 10, 2017

What Non-Scientists Can Learn From Physics

Chad Orzel has a follow-up to his earlier article on what every physics undergrad should know. This time, he tackles on what he thinks non-scientists can learn from physics.

You may read the linked article to get everything, but I have a different track in mind. Sticking to students rather than just a generic non-scientist, I'd rather focus on the value of a physics education for both scientists and non-scientists alike. After all, many non-physicists and non-scientists are "forced" to take physics classes at various levels in their undergraduate education. How can we motivate these students of the importance of these classes, and what can they learn and acquire from these classes that will be useful to them not only in their education, but also in their careers and life?

I of course tell them the relevance of physics in whatever area that they major in. But even non-scientists, such as an arts major, can acquire important skills from a physics class. With that in mind, I'd like to refer to the NACE website. They often have a poll of potential employers and what they look for in new graduates that they are considering to hire. In particular, they were asked on what type of skills they tend to look for in a candidate.

The result can be found here.

I have extracted the info in this picture:

I often show this to my students because I highlight all the skills that we will employ and honed in a physics class. I tell them that these are what they can acquire out of the class, and to be conscious of them when we either tackled a physics concept and problem, or when they are working on an experiment. In fact, often times, I often try to get them to think on how they would approach a problem in trying to solve it, with the intention of emphasizing analytical skills.

I think as physics teachers and instructors, we often neglect to show the students the non-physics benefits of a physics class. A student, whether he/she is a physics, engineering, other science, or STEM major, can ALWAYS again an advantage if he/she has those skills that I highlighted above. This is why I've often emphasize that the skills that can be acquired from a physics class often transcends the narrow boundary of a physics topic, and can often be valuable in many other areas. These skills are not subject-specific.

I often notice the irrational and puzzling argument on TV, especially from the world of politics, and I often wonder how many people could benefit from a clear, analytical ability to be able to analyze and decipher an issue or an argument. So heck yes, non-scientists can learn A LOT from physics, and from a physics class.


Friday, June 09, 2017

Host Interrupts Female Physicst Too Much, Audience Member Intervened

Hey, good for her!

The moderator of this panel interrupted physicist Veronika Hubeny of UC-Davis so much that audience member Marilee Talkington (appropriate name) got so frustrated that she intervened.

While watching a panel titled “Pondering the Imponderable: The Biggest Questions of Cosmology,” Marilee Talkington noticed that the moderator wasn’t giving physicist Veronika Hubeny, a professor at UC Davis and the only female on the panel, her fair share of speaking time.

So when the moderator, New Yorker contributor Jim Holt, finally asked Hubeny a question about her research in string theory and quantum gravity, then immediately began speaking over her to explain it himself, Talkington was furious.

Fed up with the continuous mansplaining, Talkington interrupted Holt by yelling loudly, “Let her speak, please!” The crowd applauded the request. 

You can read the rest of the story here.

Certainly, while it is awfully annoying, based on what Dr. Hubeny described, she didn't think it was a blatant sexism. Rather, she thought that the host was just overly enthusiastic. But you may judge that for yourself if the host didn't give the only female member of the panel a chance to speak.

But yeah, good for Ms. Talkington for intervening.


Friday, June 02, 2017

50 Years Of Fermilab

Don Lincoln takes you on a historical tour of Fermilab as it celebrates its 50th Anniversary this year.


Thursday, June 01, 2017

Planning For A Future Circular Collider

The future of the next circular collider to follow up the LHC is currently on the table. The Future Circular Collider (FCC) is envisioned to be 80-100 km in circumference (as compared to 27 km for the LHC) and reaching energy as high as 100 TeV (as compared to 13 TeV for the LHC).

Now you may think that this is way too early to think about such a thing, especially when the LHC is still in its prime and probably will be operating for a very long time. But planning and building one of these things take decades. As stated at the end of the article, the LHC itself took about 30 years from its planning stage all the way to its first operation. So you can't simply decide to get one of these built and hope to have it ready in a couple of years. It is the ultimate in long-term planning. No instant gratification here.

In the meantime, the next big project in high-energy physics collider is a linear collider, some form of the International Linear Collider that has been tossed around for many years. China and Japan look to still be the most likely place where this will be built. I do not foresee the US being a leading candidate during the next 4 years for any of these big, international facilities requiring multinational effort.


Tuesday, May 30, 2017

"Intersectional Quantum Physics" To Fight The Oppression of Newton?!

I've seen many crap being passed as scholarly works, but this one might take the cake.

Whitney Stark argues in support of “combining intersectionality and quantum physics” to better understand “marginalized people” and to create “safer spaces” for them, in the latest issue of The Minnesota Review.

Because traditional quantum physics theory has influenced humanity’s understanding of the world, it has also helped lend credence to the ongoing regime of racism, sexism and classism that hurts minorities, Stark writes in “Assembled Bodies: Reconfiguring Quantum Identities.”

And here's the best part:

Stark did not respond to multiple email and Facebook requests for comment from The College Fix. While she does not have any academic training in physics or quantum physics, she did complete a master’s degree in “Cyborg and Post Colonial Theory” at the University of Utrecht.

And that somehow makes her an expert in not only physics, but quantum physics and classical mechanics.

This is no different than the snake oil being peddled by the likes of Deepak Chopra. And the sad thing is, this is not new. Alan Sokal has battled this sort of thing in his attack on postmodernism philosophy. It included attacks in which the Theory of Relativity was considered to be male-biased!

But what is troubling here is that people who have only a superficial knowledge of something seem to think that they have the authority and expertise to criticize something, and all out of ignorance. And this seems to be a common practice nowadays, especially in the world of politics.


Do STEM Enrichment and Enhancement Activities Increase Study In STEM Subjects?

Well, this is a rather discouraging report.

A study of UK's secondary school students (11-16 years old) has found no significant increase in STEM participation despite involving them in STEM extra-curricula activities such as visiting labs, museum, etc. The study found that these students who were exposed to such activities are no more likely to pursue STEM subject areas and do well at the A-Levels than other students.

This longitudinal cohort study evaluated the impact of STEM enrichment and enhancement activities on continued post-16 STEM participation. A direct noticeable positive effect of engaging in these activities on pupil STEM subject choices was not found. The findings were similar for all pupils irrespective of their socio-economic status or ethnicity. Pupils who were registered by their schools for STEM enrichment and enhancement activities every year did not have any greater likelihood of continuing to study STEM subjects than their peers after compulsory education. This was true for all pupils, FSM and black ethnic minority pupils.

As someone who has participated in many outreach programs, and have been involved in providing access to various facilities to students from many schools, I always have been under the impression that such a thing might make a difference. Of course, I have no empirical evidence to back that up, other than seeing and having a feel for how excited the students were at what they were seeing and learning.  This is especially the case during my many-years of participation in Argonne's Science Careers In Search of Women program.

But I too have often wondered if these programs keep track of what the students ended up pursuing. I mean, it isn't sufficient to simply have these programs and activities. We must also evaluate how effective they are. And to be able to judge that, we have to make follow-up survey and track what these students ended up doing.

Otherwise, we will be doing all these stuff just to make us feel good without having any indication that what we did was actually beneficial or have the intended result. If this study is true, then we need to rethink how we engage with high-school students in encouraging them to be interested in STEM subjects.


Monday, May 29, 2017

Einstein and Civil Rights Activism

On tonight's episode of Antique's Roadshow on PBS, someone brought a signed photo of Albert Einstein while he was attending an honorary doctorate degree awarded to him by the historically black college of Lincoln University. This brought up the little known part of Einstein's life where he was one of the few prominent physicist who spoke about civil rights and racism in the US.

The PBS page also provided a link to an essay Einstein wrote in Pageant Magazine about racism in America at that time.

This was back in 1946. Have we changed much since then on this front?


Wednesday, May 24, 2017

What Every Physics Major Should Know?

Chad Orzel took on the silly tweet posted by Sean Carroll on what HE thinks that every physics major should  know.

Over the weekend, cosmologist and author Sean Carroll tweeted about what physics majors should know, namely that "the Standard Model is an SU(3)xSU(2)xU(1) gauge theory, and know informally what that means." My immediate reaction to this was pretty much in line with Brian Skinner's, namely that this is an awfully specific and advanced bit of material to be a key component of undergraduate physics education. (I'm assuming an undergrad context here, because you wouldn't usually talk about a "major" at the high school or graduate school levels.)

I categorize the tweet by Carroll as silly because he has no evidence to back up WHY this is such an important piece of information and knowledge for EVERY physics major. I hate to make my own silly generalization, but I'm going to here. This type of assertion sounds like it is a typical comment made by a theorist working on an esoteric subject matter. There! I've said it, and I'm sure I've offended many people already!

I would like to make another assertion, which is that there are PLENTY (even majority?) of physics majors who got their undergraduate degree without "informally" knowing the meaning of "...the Standard Model is an SU(3)xSU(2)xU(1) gauge theory...", AND..... go on to have a meaningful career in physics. Anyone care to dispute me on that?

If that is true, then Carroll's assertion is meaningless, because there appears to be NO valid reason for why a physics major needs to know that. He/she needs to know QM, CM, and E&M. That much I will give. Orzel even listed these and other subject areas that a typical undergraduate in physics is assumed to know. But a gauge symmetry in the Standard Model? Is this even in the Physics GRE?

Considering that about HALF of B.Sc degree recipients in physics do not go on to graduate school, I can think of many other, MORE IMPORTANT skills and knowledge that we should equipped physics majors. We are trying to make physics majors more "employable" in the marketplace, especially in the private sector. Comments by Carroll simply re-enforced the DISCONNECT that many physics departments have in how they train and educate their students without paying attention to their employment possibilities beyond research and academia. This is highly irresponsible!

I'm glad that Orzel took this head on, because Sean Carroll should know better... or maybe he doesn't, and that's the problem!


Thursday, May 18, 2017

"Difficult" and "Easy" Are Undefined

This post comes about because in an online forum, someone asked if it is "easier" to heat something than to cool it down. The issue for me here isn't the subject of the question, which is heating and cooling and object, but rather, that the person asking the question thinks that the "measure" here is the "easiness". I'm sure this person, and many others, didn't even think twice to realize that this is a rather vague and ambiguous question. After all, it is common to ask if something is easy or difficult. Yet, if you think about it carefully, this is really asking for something that is undefined.

First of all, the measure of something to be "easy" or "difficult" it itself is subjective. What is easy to some, can easily be difficult to others (see what I did there?). Meryl Streep can easily memorize pages and pages of dialog, something that I find difficult to do because I am awful at memorization. But yet, I'm sure I can solve many types of differential equations that she finds difficult. So already, there is a degree of "subjectiveness" to this.

But what is more important here is that, in science, for something to be considered as a valid description of something, it must be QUANTIFIABLE. In other words, a number associated with that description can be measured or obtained.

Let's apply this to an example. I can ask: How difficult or easy it is to stop a 100 kg moving mass? So, what am I actually asking here when I ask if it is "easy" or "difficult"? It is vague. However, I can specify that if I use less force to make the object come to a complete stop over a specific distance, then this is EASIER than if I have to use a larger force to do the same thing.

Now THAT is more well-defined, because I am using "easy" or "difficult" as a measure of the amount of force I have to apply. In fact, I can omit the use of the words "easy" and "difficult", and simply ask for the force needed to stop the object. That is a question that is well-defined and quantifiable, such that a quantitative comparison can be made.

Let's come back to the original question that was the impetus of this post. This person asked if it is easier to heat things rather than to cool things. So the question now is, what does it mean for it to be "easy" to heat or cool things. One measure can be that, for a constant heat transfer, how long in time does it take to heat or cool the object by the same change in temperature? So in this case, the measure of time taken to heat and cool the object by the same amount of temperature change is the measure of "easy" or "difficult". One can compare time taken to heat the object by, say, 5 Celsius, versus time taken to cool the object by the same temperature change. Now this, is a more well-defined question.

I bring this up because I often see many ordinary conversation, discussion, news reports, etc.. etc. in which statements and descriptions made appear to be clear and to make sense, when in reality, many of these are really empty statements that are ambiguous, and sometime meaningless. Describing something to be easy or difficult appears to be a "simple" and clear statement or description, but if you think about it carefully, it isn't! Ask yourself if the criteria to classify something to be easy, easier, difficult, more difficult, etc... etc. is plainly evident and universally agreed upon. Did the statement that says "such and such undermines so-and-so" is actually clear on what it is saying? What exactly does "undermines" mean in this case, and what is the measure of it?

Science/Physics education has the ability to impart this kind of analytical skills, and to impart this kind of thinking to the students, especially if they are not specializing in STEM subjects. In science, the nature of the question we ask can often be as important as the answers that we seek. This is because unless we clearly define what it is that we are asking, then we can't know where to look for the answers. This is a lesson that many people in the public need to learn and to be aware of, especially in deciphering many of the things we see in the media right now.

It is why science education is invaluable to everyone.


Thursday, May 11, 2017

Initial Employment Of US Physics Bachelors

The AIP has released the latest statistics on the initial employment of Physics Bachelors degree holders from the Class of 2013 and 2014.

Almost half of the degree holders left school to go into the workforce, with about 54% going on to graduate school. This is a significant percentage, and as educators, we need to make sure we prepare physics graduates for such a career path and not assume that they will all go on to graduate schools. This means that we design a program in which they have valuable and usable skills by the time they graduate.